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Abstract An abstract dynamical system is formulated from three features extracted from
classical hydrodynamics. One its particular realization is then the classical hydrodynamics,
other possible realizations are extensions of the classical hydrodynamics. The three features
entering the formulation of the abstract dynamical system are the conservation laws, the
compatibility with equilibrium thermodynamics, and the compatibility with classical me-
chanics in the limit of no dissipation. The particular extensions on which we illustrate the
process of constructing different realizations are those arising when dealing with fluids in
the vicinity of gas-liquid phase transitions (i.e. fluids involving large spatial inhomogeneities
and large fluctuations).

Keywords Hydrodynamics · Nonequilibrium thermodynamics · Gas-liquid phase
transition · GENERIC

1 Introduction

Classical hydrodynamics has a limited domain of applicability. Polymeric fluids exhibiting
viscoelastic flow behavior or fluids in the vicinity of gas-liquid phase transitions are exam-
ples of the fluids that lie outside the domain. In the former case it is the presence of polymer
macromolecules and in the latter the presence of large spatial inhomogeneities and fluctua-
tions that cause the problem. If the time scale of changes of an internal structure of the fluid
(e.g. polymer macromolecules, spatial inhomogeneities and fluctuations) is comparable to
the time scale of changes of classical hydrodynamic fields then the classical hydrodynamics
has to be coupled to the time evolution of the internal structure. To construct an extended
hydrodynamics with an enlarge domain of applicability means thus, first, to recognize the
internal structure playing the essential role, and second, to construct in the enlarged state
space (consisting of the classical hydrodynamic fields and the extra state variables chosen
to characterize the internal structure) the time evolution. There are two strategies that can
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be followed. We can either start on a microscopic level and then gradually reduce the for-
mulation to the level of extended hydrodynamics or we can start on the level of classical
hydrodynamics and then try to extend it to a more microscopic level while keeping some
of its features that we judge to be important. Both strategies are complementary and should
be preferably followed simultaneously. The outcome of the extension can be either one dy-
namical theory or more appropriately a family of mutually compatible dynamical theories
formulated on several different levels of description. The latter formulation is then called a
multiscale (or multilevel) model.

The objective of this paper is to explore the method of extension whose point of depar-
ture is classical hydrodynamics. As an illustration we formulate an extended hydrodynamics
suitable for fluids in the vicinity of gas-liquid phase transition. An extension reported previ-
ously in [1] has the same spirit as the one presented below but is done in somewhat different
context and is much less complete.

The “holy grail” of classical hydrodynamics is the conservation of mass, momentum and
energy. If the state variables are chosen to be the classical hydrodynamic fields, i.e. the local
mass, the local momentum, and the local energy, then the requirement of the global con-
servation provides immediately the framework for the time evolution equations. The frame-
work (that we shall call an abstract dynamical system) consists of the local conservation
laws, i.e. the time derivative equals divergence of a flux. The individual features of the fluids
are expressed in the fluxes. Their specification is called a constitutive relation. We can also
see the search for constitutive relations as a search for different realizations of the abstract
dynamical system.

Beside the mass, momentum and energy conservations, what are the other important
properties of the governing equations of classical hydrodynamics? We suggest two: compat-
ibility with equilibrium thermodynamics and compatibility with classical mechanics in the
limit of no dissipation. We discuss them in the following two paragraphs.

Fluids that are left free of external influences are seen to reach states, called equilibrium
states, at which their behavior is seen to be well described by classical thermodynamics.
What is the property of solutions expressing this experimental observation and what is the
structure of the time evolution equations guaranteeing it? Nonequilibrium thermodynamics
has been investigating this question and by doing it contributed to classical hydrodynamics.
Roughly speaking, the answer goes as follows: Fluids are seen as being at local equilibrium.
Following classical thermodynamics, we introduce a new scalar field, namely the field of
local entropy. As in classical thermodynamics where the entropy is a function (called a
fundamental thermodynamic relation) of the independent thermodynamic state variables,
the local entropy is a function (called a local fundamental thermodynamic relation) of the
classical hydrodynamic fields. Their time evolution is restricted by requiring that the entropy
never decreases in the course of the time evolution.

Now we turn to the compatibility with classical mechanics. The equation expressing the
local conservation of momentum can also be interpreted as a formulation of Newton’s law
(mass times acceleration equals force). Indeed, Euler has constructed the Euler equation (the
equation governing the time evolution of the momentum in the limit of no dissipation) as a
continuum version of Newton’s law. In classical hydrodynamics this purely mechanical as-
pect of the time evolution is not used to its full potential. Its main application is in providing
a part of the momentum flux with an alternative interpretation (as a force acting on surface).

Our objective is, first, to formulate an abstract dynamical system in which all three prop-
erties mentioned above play an equally important role, and second, to construct its various
realizations.
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2 GENERIC Dynamical System

The abstract dynamical system whose trajectories are guaranteed to agree with the conserva-
tions laws and are compatible with thermodynamics and mechanics has been gradually [2–7]
extracted from classical hydrodynamics and also from kinetic theories and other mesoscopic
theories. It has been called GENERIC in [4, 5]. We shall use this name also here. Keeping
the terminology established in hydrodynamics where particular realizations of the local con-
servation laws are called constitutive relations, we shall use the term GENERIC constitutive
relations to denote particular realizations of GENERIC. In this section we recall the formu-
lation of GENERIC. In Sect. 3 we discuss GENERIC constitutive relations corresponding
to fluids with large spatial inhomogeneities and fluctuations.

Let x denote the state variables (for example those listed in (11)). The time evolution of
x is governed by [2–7]

ẋ = LEx + ∂�

∂Hx

(1)

called GENERIC. The first term on the right hand side of (1) expresses the compatibility
with mechanics, the second the compatibility with thermodynamics. The symbols appearing
in (1) have the following meaning.

2.1 Energy

E(x), a real valued function of x, has the physical meaning of the total energy.
By Ex we denote the derivative of E with respect to x. If x involves a field (e.g. the mass

density ρ(r), r ∈ R
3 is the position vector) then E is a real valued functional, Eρ(r) = δE

δρ(r)

is a function of r . By the symbol δ/δ we denote the Volterra functional derivative. In order
to simplify the notation we shall write hereafter Eρ instead of Eρ(r).

2.2 Eta-function

H(x) is called an eta-function. It plays the role of the function often called a nonequilibrium
entropy. Because of the multitude of meanings that have been associated in the past with the
name “nonequilibrium entropy”, we do not use it in the abstract formulation. In the particular
case when (1) represents the Boltzmann kinetic equation, the eta-function H is exactly the
Boltzmann H-function. In the abstract formulation we use the same symbol but read H as
eta.

2.3 Kinematics

The equation

ẋ = LEx (2)

is the mathematical expression of the compatibility of the time evolution of x with mechan-
ics. To see it, we consider first (2) in the particular case of classical mechanics of particles,
i.e. for x = (q,p), where q are position vectors and p the momenta of the particles. Hamil-
tonian reformulation of Newton’s equations takes the form of (2) where L = ( 0 1

−1 0

)
and

E(q,p) is the energy. The operator L, hereafter called a Poisson bivector, transforms a
covector (a gradient of a potential) into a vector and expresses kinematics of the state vari-
ables (q,p). We thus see that in this particular example (2) expresses indeed the classical
mechanics.
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It has been found useful in classical mechanics to reformulate (2) into another form.
Having L, we construct a bracket

{A,B} = 〈Ax,LBx〉 (3)

where A and B are sufficiently regular real valued functions of x, 〈, 〉 denotes the inner
product. The equation (3) defines the bracket for given L and conversely, (3) defines L

if the bracket is given. For x = (q,p) and L given in the previous paragraph, we have
{A,B} = AqBp − BqAp . It is easy to verify that this bracket is a Poisson bracket, i.e.
{A,B} = −{B,A}, and the Jacobi identity {A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0
holds (A,B,C are sufficiently regular real valued functions of (q,p)). Moreover, we note
that L is nondegenerate, i.e. {A,B} = 0 for all A implies B = constant. Having the Poisson
bracket, the time evolution equation (2) can now be also written as

Ȧ = {A,E} holds for all A (4)

Now we turn to another particular case, namely to the case of classical hydrodynam-
ics, i.e. x = classical hydrodynamic fields. Clebsch in [8] has asked the following question:
Euler’s equation is a continuum version of Newton’s law (mass times acceleration equals
force), what is its Hamiltonian formulation? His answer given in [8] (reformulated into the
form introduced later in [9]) is again (2) with E being the energy and L being a Poisson
bivector. The bracket (3) corresponding to the Clebsch reformulation of the governing equa-
tions of classical hydrodynamics (written explicitly in Sect. 3.3) is again a Poisson bracket
(i.e. it is antisymmetric and the Jacobi identity holds) but it is degenerate: {A,H } = 0 and
{A,M} = 0 for all A. By M(x) we denote the total mass.

It has been observed that the nondissipative part of the time evolution in the Boltzmann
kinetic theory and in many other mesoscopic theories is governed by equations that can all
be cast into the form of (2). In this paper we are exploring extensions of classical hydrody-
namics that share with the classical hydrodynamics the form (2) of their nondissipative part
of the time evolution.

2.4 Dissipation

�(Hx), called a dissipation potential, is a sufficiently regular real valued function of Hx

satisfying the following properties: (i) �(0) = 0, � reaches its minimum at 0, (iii) � is
concave in a neighborhood of 0, and (iv) � is degenerate: 〈Ex,

∂�
∂Hx

〉 = 0, 〈Mx,
∂�
∂Hx

〉 = 0.

2.5 Properties of Solutions of (1)

The properties required from E,M,H,L,� introduced above imply that solutions to (1)
have the following properties:

(i)

dM

dt
= 0; dE

dt
= 0 (5)

which means that the total mass M and the total energy E are conserved in the course
of the time evolution.
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(ii)

dH

dt
≥ 0 (6)

which means that the eta-function H can only grow during the time evolution.
(iii)

x → xeq as t → ∞ (7)

where xeq is the state at which the thermodynamic potential

�(x;Teq,μeq) = −H(x) + 1

Teq
E(x) − μeq

MmolTeq
M(x), (8)

reaches its minimum, i.e. a solution of

�x = 0. (9)

The state xeq is called an equilibrium state. The quantities Mmol, Teq and μeq introduced
in (8) are constant parameters. Their physical meaning is explained below.

2.6 Proofs

The property (5) follows from the skew-symmetry of L and from the degeneracy of L and �.
By using the degeneracy of L, we arrive at dH

dt
= 〈Hx,

∂�
∂Hx

〉 ≥ 0. The last inequality
follows from the properties required from the dissipation potential �.

In order to prove the property (7) we note that the thermodynamic potential (8) plays the
role of the Lyapunov function (i.e. � is convex and d�

dt
≤ 0). We have to stress however

that this proof remains formal since the topological issues (needed already for proving that
solutions to (1) exist) are not addressed.

2.7 The Fundamental Thermodynamic Relation of Classical Equilibrium Thermodynamics
Implied by (1)

First, we introduced the state variables (Eth,Nth) of classical equilibrium thermodynamics:
Eth = E(xeq) is the equilibrium thermodynamic energy and Nth = 1

Mmol
M(xeq) (Mmol is the

molecular mass) is the equilibrium thermodynamic number of moles (both Eth and Nth per
unit volume if the volume of the region in which the fluid under consideration is confined
is put equal to one). Second, the conjugate form Peq = Peq(μeq, Teq) of the fundamental
thermodynamic relation Seq = Seq(Eeq,Neq) of classical equilibrium thermodynamics is the
following:

−Peq

Teq
= �(xeq;Teq,μeq) (10)

Peq is the equilibrium thermodynamic pressure, μeq the equilibrium thermodynamic chemi-
cal potential, Teq the equilibrium thermodynamic temperature, and Sth = H(xth) is the equi-
librium thermodynamic entropy. The two forms Peq = Peq(μeq, Teq) and Seq = Seq(Eeq,Neq)

of the fundamental thermodynamic relation of classical equilibrium thermodynamic are re-
lated by the Legendre transformation.
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3 GENERIC Constitutive Relations

The framework (1) is universal since it represents a mathematical expression of two uni-
versal experiences: compatibility with mechanics in the inviscid limit and the compatibility
with thermodynamics in the case of externally unforced systems. The specific nature of the
systems under investigation is expressed in the specification (called hereafter a GENERIC
constitutive relations) of the state variables x, functions E(x),M(x),H(x),�(Hx) and the
operator L(x), all introduced in (1). It is absolutely essential to make distinction between the
universality of the framework and the non universality in the way it is filled. The framework
(1) with x,E,M,H,�,L specified is called a particular realization of (1). In the rest of this
paper we shall make some general observations about various strategies that can be used to
specify the GENERIC constitutive relations. We shall also work out an illustration.

3.1 State Variables

Before making general observations and developing the specific illustration, we present
some examples of state variables x that have been explored.

In the first example (considered in [10]) we choose x = (ρ(r),u(r), e(r),P ,Q). By ρ

we denote the local mass (mass per unit volume), u is the momentum (momentum per unit
volume), and e the energy (the total energy per unit volume); r ∈ R

3 denotes the position
vector. By (P ,Q) we denote the momenta and position vectors of N ∼ 103 particles. This
choice of state variables provides a setting for direct computer simulations (done with the
main objective to obtain hydrodynamic fields as the result) of N particles that are subjected
to external forces defined in terms of hydrodynamic fields (e.g. an imposed shear flow or a
temperature control).

In the second example (considered in [11]) we take x = (ρ(r),u(r), e(r), f (q,p)),
where f (q,p) is the one particle phase space distribution function, q is the momentum
of one particle and q the position coordinate of one particle. The complete time evolution
equations in this setting are in [11] ((40)–(43) in [11]). The one particle phase space dis-
tribution function represents in this setting an extra information about the system under
consideration, i.e. an information in addition to the information provided by the classical
hydrodynamic fields.

Grad’s reformulation of kinetic theory in which the classical hydrodynamic fields arise
as the first five moments (in the velocity variable) of the one particle phase space distribution
function suggests [12, 13] to choose x = (ρ(r),u(r), e(r)),higher order moments).

Investigations of complex fluids (e.g. polymeric fluids like the egg white or suspensions)
lead [14–16] to the introduction of various extra fields characterizing either the internal
structure of the suspended molecules and particles or their collective behavior. In both cases
the extra field is typically a field ψ(r,R), where R is either the end-to-end vector of the
suspended particle or the vector connecting two points in the suspension. In the latter case
the field ψ is a pair correlation function.

Promotion of the classical hydrodynamic fields to the status of the random classical hy-
drodynamic fields represents another way [17–19] to introduce new x. We can also see the
new state variables as x = P(ρ(r),u(r), e(r)), where P denotes the distribution function.

By using the well established terminology, we refer to x = (classical hydrodynamic
fields) as macroscopic state variables, to x = (classical hydrodynamic fields, extra fields)
or x = (n-particle distribution functions), where n = 1 or n = 2 (rarely a larger integer)
as mesoscopic state variables (a term coined by N.G. van Kampen), and to x = (P ,Q) or
x = fN(P ,Q), where P are momenta and Q position coordinates of N ∼ Avogadro’s num-
ber particles, fN(P ,Q) is the N-particle distribution function, as microscopic variables.
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Now we turn to the question we want to address in this subsection: Given a physical
system, the conditions in which it is observed, and our anticipated applications of the the-
ory, what are the mesoscopic state variables x that we choose? The answer is based on a
combination of the following three types of considerations.

(1) Microscopic considerations.
We choose a microscopic level (we denote it by the symbol Lmicro) and formulate on it

the time evolution. The level Lmicro can be the level of classical mechanics of N ∼ Avo-
gadro’s number of particles but it can also be, say, the level of one particle kinetic theory.
Subsequently, we reduce the dynamics on the level Lmicro to dynamics taking place on the
level on which x serves as state variables. The reduction process is made in two steps. In
the first step we solve completely the governing equations on the level Lmicro. As a result
we obtain a collection of trajectories that we shall call a phase portrait on the level Lmicro;
we shall denote it by the symbol Pmicro. In the second step we extract a pattern in Pmicro.
The time evolution of the pattern is then the reduced dynamical theory that uses x as state
variables. In general, new phenomena, new physics, emerge in the second step. In order to
bring the second step closer to our everyday experience, we can think of Pmicro as about
a painting and about the pattern as about an emerging feature (e.g. human face). The two
step reduction process sketched above is sometimes referred to as “an identification of slow
variables and the slow time evolution”. It is obvious that the first step is prohibitively dif-
ficult (for example due to the enormous number of degrees of freedom and the lack of the
complete microscopic characterization of the system under consideration). The second step
is however even more difficult. Let us assume that we have succeeded to make the first step
by analytically solving the governing equations on the level Lmicro. We are still very far from
recognizing a pertinent pattern in Pmicro.

(2) A guess based on an experience.
Many macroscopic and mesoscopic theories (e.g. classical hydrodynamics) have been

introduced (in a complete isolation from any microscopic point of view) in an attempt to or-
ganize and understand an experience collected in certain type of experimental observations.
A large experience collected with complex fluids [12–16], in both experimental and theoret-
ical investigations, can serve as a basis for suggesting a set of appropriate mesoscopic state
variables x.

(3) Anticipated applications.
The choice of the state variables x is clearly influenced not only by the physics of the sys-

tem under consideration but also by the anticipated applications. We shall naturally choose
x that is as close as possible to what we directly observe and are interested in.

To sum up the above observations about an appropriate choice of x, we conclude that
there is no completely satisfactory answer to the question “why this x, why not another”.
The best we can do is to suggest x on the basis of a combination of the above three consider-
ations. With such x we then calculate theoretical predictions and compare them with results
of experimental observations. We can either be (relatively) satisfied or we are not satisfied
and suggest another x.

3.1.1 Illustration

Below, we illustrate the process of constructing a particular realization of (1). As physical
systems we choose simple fluids (e.g. water) in vicinity of the gas-liquid phase transition.
Such fluids are expected to have three new features that in fact turn the simple fluid into a
complex fluid: appearance of large spatial inhomogeneities, appearance of large fluctuations,
and possibly also appearance of long range forces. The first and the third features will be
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addressed in the fundamental thermodynamic relation discussed in Sect. 3.2, the second and
the third features are addressed below in the specification of extra fields admitted to x.

First, we begin with the anticipated applications of our mesoscopic theory. The fluids are
expected to be observed with essentially the same experimental techniques as those used
in classical hydrodynamics and in the experimental rheology of complex fluids. Our goal
is to arrive at extended hydrodynamic equations of the type appearing in [20] (see also the
references cited therein) and [21–23].

Second, we shall not turn to the microscopic analysis. We shall also avoid the stochastic
approach in which x = P(ρ(r),u(r), e(r)), where P denotes the distribution function. Our
arguments proceed as follows.

The appearance of fluctuations is an indication that the quantities used as state vari-
ables (i.e. the classical hydrodynamic fields in our case) are insufficient. The fluctuations
are caused by keeping out of control some other quantities playing an important role in the
time evolution. What are these quantities? With the support from the vast experience col-
lected in complex fluids we suggest that the pair correlation function g(r,R), where R is
the vector connecting two points is one such quantity. With this new field we will also be
able to express (in the specification of the fundamental thermodynamic relation discussed
in Sect. 3.2 below) the influence long range forces that cannot be included into the setting
of classical hydrodynamics. The choice of g(r,R) as the extra state variable can also be
supported by the experience collected in equilibrium statistical mechanics [24]. Of course,
the importance of the pair correlation function g recognized at equilibrium does not auto-
matically mean that g retains its importance also in the time evolution. But here we argue
that in the context of complex fluids (like suspensions) the pair correlations functions have
been found (by comparing theoretical predictions with results of experimental observations)
to be an appropriate state variables also out of equilibrium. Because of the relation between
g and the extra stress tensor established in (33), we can also regard the acceptance of g into
the set of state variables as an alternative way of accepting the stress tensor into x.

In the second field that we shall adopt into x we want to express genuine nonequilibrium
processes. Candidates for such fields are the fluxes arising in the local conservation laws of
classical hydrodynamic fields. This is indeed the way the extra fields are chosen in extended
irreversible thermodynamics [12, 13]. We choose a field, we shall denote it w(r), that, as it
will become clear later (in Sect. 4) when its role in the time evolution is revealed, is closely
related to the nondissipative heat flux and entropy flux. We shall call w(r) an entropy-
momentum since it will be shown to play the same role for the field of local entropy as the
momentum u plays for the field of the local mass. Its relation to the heat flux is given in
(43) and the entropy flux in (44) (see also Sect. 5.1.4 where the relation between w and
the Fourier heat flux is established). Alternative arguments, different from those used in the
extended irreversible thermodynamics [12, 13], that support the choice of w and provide it
with an alternative physical interpretation have been introduced in [25, 26].

A general comment about the physical interpretation of the state variables x that are
used in the context of the framework (1) is in order. It is well known in both mechanics
and thermodynamics (both being present in (1)) that the state variables have always their
conjugates (duals) and that it is very important to make a distinction between the variable
and its dual. In thermodynamics, an example of such pair is the energy and the temperature.
In mechanics, an example is the velocity and its dual called momentum. In the Hamiltonian
formulation of mechanics, it is the momentum that presents itself as a natural state variable.
Its dual, velocity, appears in the time evolution equations. Since the quantities that enter the
time evolution equations are more directly related to the measured quantities, we can argue
that the velocity is a more “physical” state variable than momentum. Nevertheless, it is with
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the momentum that we appreciate the mathematical structure of the time evolution equations
and recognize its importance. This is indeed the reason why we use the momentum field
u(r) instead of the velocity field v(r) that is customarily used in classical hydrodynamics.
Similarly, the heat flux is a more “physical” quantity than the field w(r). Nevertheless, we
have to use w(r) as the state variable since we are filling the Hamiltonian like structure
(1). The same type of argument leads us to prefer the pair correlation function as the state
variable over the extra stress tensor.

The full set of the state variables considered in this illustration of the extended hydrody-
namics is thus

x = (ρ(r),u(r), e(r), g(r,R),w(r)) (11)

Next we should turn into the physics taking place on the boundaries. This type of con-
sideration leads, in general, to another set of (boundary) state variables and boundary con-
ditions for (11). In this paper we shall consider the fluids without boundaries. The boundary
conditions for (11), if needed, will be the periodic boundary conditions.

3.2 Fundamental Thermodynamic Relation

With the state variables (11), the total energy E is clearly given by

E =
∫

dre(r) (12)

since e(r), that is one of the fields included in the state variables (11), is, from the physical
point of view, the local energy.

The total mass M is clearly

M =
∫

drρ(r) (13)

since ρ(r), that is one of the fields included in the state variables, has the physical meaning
of the local mass.

The total entropy S is given by

S =
∫

drs(r) (14)

where s(r) is the local entropy (entropy per unit volume)

s(r) = s(ρ,u, e, g,w; r) (15)

Note that s depends on u. This is because e is the total energy per unit volume (i.e. it
includes the kinetic energy). It is customary in classical hydrodynamics to use the internal
energy (that does not involve u) and not the total energy as one of the hydrodynamics fields.
If e in (15) is replaced by the internal energy then, due to the requirement of the Galilei
invariance of the fundamental thermodynamic relation, u in (15) disappears (but ∇u can
still be there). We use in this paper the total instead of the internal energy since the structure
of the governing equations as well as the equations themselves become much simpler.

Before discussing some particular examples of the relation (15), we introduce an equiva-
lent reformulation of the fundamental thermodynamic relation (i.e. the specification of E,M

and S). By using Callen’s terminology [27], the state variables x considered so far have been
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the state variables in the entropy representation. If we solve the thermodynamic relation (15)
for e(r), we obtain the thermodynamic relation e = e(y) where y are the state variables in
which the field e(r) is replaced by the local entropy s(r). To simplify the notation, we shall
use the same symbol x for the state variables in both representations:

x = (ρ(r),u(r), s(r), g(r,R),w(r)) (16)

Instead of (15) we thus have now

e(r) = e(ρ,u, s, g,w; r) (17)

that plays the role of (15) in the energy representation. The one-to-one relation between
e(r) and s(r) is guaranteed by the positivity of the local temperature (e[s(r )])−1). We use
hereafter the notation: A[φ(r )] = δA

δφ(r )
, where A is a function of a field φ(r), and δ/δ is the

Volterra functional derivative. For the later use we recall the relations among the derivatives
of S and E:

E[s] = (S[e])−1; E[ui ] = −S[ui ]/S[e]; E[ρ] = −S[ρ]/S[e]; E[wi ] = −S[wi ]/S[e]
(18)

Now we turn to particular examples of the relation (15) or (17). We begin with (11)
in which only the classical hydrodynamic fields (ρ(r),u(r), e(r)) are kept. Classical fluid
mechanics assumes local equilibrium and consequently

s(r) = s(ρ(r),u(r), e(r)) (19)

is pointwise the thermodynamic relation representing the fluid under consideration in clas-
sical equilibrium thermodynamics.

We continue with (11) consisting of only the classical hydrodynamic fields. If the fluids
under investigation involve important spatial gradients then the function s in (15) is expected
to be nonlocal. Cahn and Hilliard [28] have extended (19) by letting s(r) to depend also on
the spatial gradient (denoted hereafter by the symbol ∇) of ρ, i.e. (19) is replaced by

s(r) = s(ρ(r),u(r), e(r),∇ρ(r)) (20)

If the gradients are not large, then, as suggested by Cahn and Hilliard, the extended funda-
mental thermodynamic relation (20) can be just the relation (19) to which a term propor-
tional to (∇ρ(r))2 has been added. The equilibrium sate xeq calculated for (8) in which H

(called S in the particular setting discussed in this paper) in (14) involves (20) is, in general,
spatially inhomogeneous. From the physical point of view, the appearance of the spatial
inhomogeneity in xeq can be interpreted as an appearance of gas-liquid phase transition. In-
deed, van Kampen [24] has identified (20) for which the thermodynamic equation of state
(10) is the van der Waals equation of state.

The equilibrium statistical mechanics can also be used (see e.g. [12]) to suggest the form
of (15) if x involves the classical hydrodynamic fields and the pair correlation function g:

s(r) = s(ρ(r),u(r), e(r), g(r,R)),∇ρ(r),∇e(r),∇g(r,R)) (21)

We have included in (21) ∇ρ, ∇e, and ∇g since, even at equilibrium, all three fields ρ, e,
and g become spatially inhomogeneous in two-phase fluids.

Now we turn to nonequilibrium situations and thus to the two velocity-type fields u and
w included in (15). If the state variables were position and momenta of all atoms composing
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the fluid under consideration then the kinetic energy were the sum of kinetic energies of
all the atoms. This is the microscopic kinetic energy. If only u serves as the state variable
then the kinetic energy is given by Ekin = ∫

dr u2

2ρ
(called a macroscopic kinetic energy)

and the difference between this energy and the sum of kinetic energies of all the atoms is
included in the internal energy. If both u and w are included in the set of state variables then
Ekin = ∫

dr( u2

2ρ
+ w2

2ρ
). This is a mesoscopic kinetic energy. The second term is a contribution

of the molecular-level motion associated with the heat transfer. This term is included in the
internal energy if w is absent in the set of state variables. We note that the mesoscopic kinetic
energy is different from zero even in the absence of the overall motion (i.e. when u = 0 and
w �= 0. At the equilibrium however both u and w equal zero (since the equilibrium state is
a solution of (9)) and consequently the kinetic energy equals zero.

The presence of spatial inhomogeneities of the mass field ρ brings by itself still an-
other contribution to the kinetic energy. This is because the changes in ρ are in dynamical
situations always accompanied with the occurrence of the divergence of the velocity. We
shall therefore involve in the relation (21) also div u. (hereafter we shall use the notation
ν = div u) and write it as

s(r) = s(ρ(r),u(r), e(r), g(r,R)),∇ρ(r),∇e(r),∇g(r,R), ν(r)) (22)

The kinetic energy Ekin takes the form

Ekin =
∫

dr

(
u2

2ρ
+ w2

2ρ
+ l2ν2

2ρ

)
(23)

where l is the characteristic length of the mass inhomogeneity. The last term in (23) is the
contribution to the kinetic energy associated with the fluid motion needed to create or destroy
spatial inhomogeneities. At the equilibrium u ≡ 0 and thus also ν = 0 so that the third term
in (23) equals zero. But outside the equilibrium it represent an important contribution to
the kinetic energy. The Cahn-Hilliard modification of the energy, developed originally by
Cahn and Hilliard in the context of the equilibrium theory, has to be accompanied with
the modification (23) of the kinetic energy if it is used in the context of a nonequilibrium
theory. To the best of our knowledge, this intrinsically consistent extension of the Cahn-
Hilliard analysis from equilibrium to nonequilibrium is made for the first time in this paper.
Its interesting consequences for the time evolution will be discussed in Sects. 4 and 5.

If our interests were turned to complex, in particular then to turbulent, flows the we
would involve in (22) also the vorticity. However, since we have in mind the same type of
applications as those discussed in [20–23], we keep only the divergence of u (since this
is the quantity closely related to changes in the mass density arising in gas-liquid phase
transitions) and leave out the vorticity that becomes important in turbulent flows.

Finally, we add a comment about the functional derivatives introduced in (18). In the case
when the nonlocal dependence is manifested only by involving spatial gradients but keeping
the local (pointwise) functional dependence (i.e. the nonlocal dependence introduced (20),
(21), and (22), the functional derivatives become variational functional derivatives:

A[φ(r)] = Aφ(r) − ∂iA∂iφ(r) + ∂i∂jA∂i∂j φ(r) − . . . , (24)

where Aφ(r) is the nonvariational (local) functional derivative of A with respect to φ(r),
similarly ∂iA∂iφ(r) is the nonvariational (local) functional derivative of A with respect to
∂iφ(r), . . . . By ∂i we denote ∂

∂ri
.



592 M. Grmela

3.3 Kinematics

The state variables (11) are not new. Their kinematics is well known and readily available.
In order to be able to deal easily with the required degeneracy of L (i.e. the requirement

that LSx = LMx = 0) we first introduce L in the energy representation (see (16)). The
Poisson bracket (or equivalently the Poisson bivector L, see (3)) expressing the kinematics
of (16) is given by

{A,B} =
∫

dr(A[ρ], A[u], A[s], A[g], A[w])Le

⎛

⎜⎜
⎜
⎝

B[ρ]
B[u]
B[s]
B[g]
B[w]

⎞

⎟⎟
⎟
⎠

(25)

=
∫

dr
[
ρ
(
∂j (A[ρ])B[uj ] − ∂j (B[ρ])A[uj ]

)

+uj

(
∂i(A[uj ])B[ui ] − ∂i(B[uj ])A[ui ]

)

+ s
(
∂j (A[s])B[uj ] − ∂j (B[s])A[uj ]

)

+ s
(
∂j (A[s])B[wj ] − ∂j (B[s])A[wj ]

)

+
∫

dRg
(
∂j (A[g])B[uj ] − ∂j (B[g])A[uj ]

)

+
∫

dRgRj

(
∂

∂Rk

(
A[g]

)
∂j (B[uk ]) − ∂

∂Rk

(
B[g]

)
∂j (A[uk ])

)

+wj

(
∂i(A[wj ])B[ui ] − ∂i(B[wj ])A[ui ]

)

+wj

(
∂i(A[wj ])B[wi ] − ∂i(B[wj ])A[wi ]

)

+wj

(
∂i(A[uj ])B[wi ] − ∂i(B[uj ])A[wi ]

)]
(26)

where A and B are sufficiently regular real valued functions of x. The derivatives appearing
in (25) and (26) are the variational derivatives. Because of the nonlocal nature of the funda-
mental thermodynamic relations introduced in the previous section, the fact that the Poisson
bracket involves the variational derivatives is of particular importance.

The degeneracy requirement LSx = LMx = 0 or equivalently {A,S} = {A,M} = 0 for
all A can be directly verified for the bracket (26).

Before discussing the physics expressed in (26), we note that once the bracket is known
in one representation it is also known in the other. This is because a one-to-one transforma-
tion x ↔ y applied to the state variables transforms the Poisson bracket formulated in x into
another Poisson bracket formulated in y. Moreover, both bracket satisfy the same degener-
acy conditions. In particular then, if we transform x specified in (11) into x specified in (16)
then the Poisson bracket (26) transforms into another Poisson bracket expressing kinematics
of (16) satisfying the required degeneracy. We shall not write the new bracket explicitly but
we shall use it below in Sect. 4 when we write the governing equations in both the entropy
and the energy representations.

Now we turn to the explanation of the physics expressed in (26). In the particular case
when the momentum field u(r) remains the only state variable (i.e. x = u(r)), the Poisson
bracket (26) reduces to {A,B} = the second line in (26). This Poisson bracket indeed ex-
presses the kinematics of the continuum. The argument goes as follows [9, 29]: The motion
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of the continuum is a Lie group of transformations R
3 → R

3. The momentum field u can be
seen as an element of the dual of the Lie algebra corresponding to this Lie group. In general,
the Lie group operation induces always in the dual of its Lie algebra a Poisson bracket. The
bracket {A,B} = the first line in (26) is such bracket for the Lie group of the transformations
R

3 → R
3.

The remaining lines in the bracket (26) express the passive advection [29] of ρ by the
overall velocity E[u] (the first line), and of g also by E[u] (the fifth and the sixth line).
The terms involving w and s are obtained by first writing the Poisson bracket consisting
of the first two lines but with u replaced by w and ρ by s. From the physical point of
view, this corresponds to regarding the two pairs (ρ,u) and (s,w) as representing (as far as
the kinematics is concerned) two components. This viewpoint of entropy (or alternatively
energy) kinematics has been used already in [19, 20]. In order to obtain the third, the fourth
and the last three lines in (26), we make in addition the one-to-one transformation u →
u + w; w → w. The fact that the bracket (26) is a Poisson bracket follows directly from its
construction. Alternatively, it is possible to verify directly its antisymmetry (that is clearly
visible) and the Jacobi identity (this requires a long calculation).

3.4 Dissipation

Continuing the specification of the GENERIC constitutive relations, we turn to the dissipa-
tion potential �. The attention on satisfying the degeneracy requirements of L lead us in
the previous section to the energy representation. The same concern leads us in this sec-
tion in the discussion of the dissipation potential � to the entropy representation. The state
variables x are thus in this section given in (11).

The role of the dissipation is to bring fluids to thermodynamic equilibrium. While the
choice of the nondissipative time evolution is strongly constrained by requiring the Hamil-
tonian structure, the choice of the dissipative part of the time evolution is constrained only
by requiring that the total mass, momentum and energy remain conserved, and that the to-
tal entropy does not decrease. The nondissipative dynamics is clearly more fundamental.
We can see it by taking the fully microscopic (molecular) viewpoint of fluids. On this level
the dynamics is only nondissipative. The dissipative part is absent. It will arises only in the
process of solving the governing equations and interpreting the solutions (i.e. in the process
of generating trajectories and searching in them a pattern pertinent to what is observed in
macroscopic measurements). The extension that we are pursuing in this paper carries clas-
sical hydrodynamics to a level involving more details (nonlocalities and fluctuations). We
expect therefore that the dissipation in the extended theory will be the same as, or weaker
than, the dissipation in the classical theory.

We make therefore the following assumption: We keep the Navier-Stokes-Fourier dissi-
pation of classical hydrodynamics [1–7] and add only the standard dissipation [15, 16] of the
pair correlation and another standard dissipation [1, 2] of the field w. We let the dissipation
potential � to depend on the following thermodynamic forces:

X
(u)
ij = 1

2
(∂i(S[uj ]/S[e]) + ∂j (S[ui ]/S[e]))

X(vol) = ∂j (S[uj ]/S[e])
(27)

X
(w)
i = Swi

X
(g)

i = ∂

∂Ri

(S[g])
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The thermodynamic potential itself is then given by

� =
∫

dr
1

2

[
ηX

(u)
ij X

(u)
ij +

(
ηvol − 1

3
η

)
(X(vol))2 + λX

(w)
i X

(w)
i +

∫
dRg�X

(g)

j X
(g)

j

]
(28)

The first two terms represent the classical Navier-Stokes dissipation potential, η is the
viscosity coefficient, ηvol is the volume viscosity coefficient. The third term is the term
driving the field w to zero. We shall see this, as well as the relation of the phenomenological
parameter λ, to the Fourier coefficient of heat conductivity, in Sect. 5.1.3. The fourth term
is the standard dissipation potential in which the dissipation of the pair correlation function
g is expressed. The coefficient � is a new phenomenological coefficient.

The properties required in Sect. 2 from � (including its degeneracy) hold for (28) pro-
vided η > 0; (ηvol − 1

3η) > 0; λ > 0; � > 0. This statement is proved easily by a direct
verification.

4 Extended Hydrodynamic Equations

We have now all what we need to write explicitly the GENERIC equation (1). In this section
we just make the calculations and report the result. There is nothing new (neither physics
nor mathematics) entering this section. All the physics has been introduced in the concept
of GENERIC (i.e. in (1)) and in the GENERIC constitutive relations. We shall return to
physics in Sect. 5 where we shall interpret the governing equations and compare them with
the equations arising in other extensions.

We begin with the Hamiltonian part in the energy representation, then we shall turn to
the dissipative part in the entropy representation and finally to the complete hydrodynamic
equations in the entropy representation.

By inserting (26) into

(
∂

∂t

)

nondissip

⎛

⎜
⎜⎜
⎝

ρ

u

s

g

w

⎞

⎟
⎟⎟
⎠

= Le

⎛

⎜
⎜⎜
⎝

E[ρ]
E[u]
E[s]
E[g]
E[w]

⎞

⎟
⎟⎟
⎠

(29)

where Le denotes the Poisson operator in the energy representation, we obtain the extended
nondissipative time evolution equations

(
∂ρ

∂t

)

nondissip

= −∂j (ρE[uj ])

(
∂ui

∂t

)

nondissip

= −∂j (uiE[uj ]) − ∂ip − ∂j τ
(nd)
ij

(
∂s

∂t

)

nondissip

= −∂j (sE[uj ]) − ∂j (sE[wj ]) (30)

(
∂g

∂t

)

nondissip

= −∂j (gE[uj ]) − ∂

∂Ri

(gRj∂jE[ui ])

(
∂wi

∂t

)

nondissip

= −∂j (wiE[uj ]) − ∂j (wiE[wj ])

− s∂i(E[s]) − wj∂i(E[uj ]) − wj∂i(E[wj ])
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where

p(r) = −e(r) + ρ(r)E[ρ(r)] + s(r)E[s(r)] + uj (r)E[uj (r)]

+
∫

dRg(r,R)E[g(r,R)] + wjE[wj (r)] (31)

is the scalar hydrostatic pressure and

τ
(nd)
ij (r) = τ

(g,w)

ij (r) + τ
(inhom)
ij (r) (32)

τ
(g,w)

ij (r) = −
∫

dRg(r,R)Rj

∂

∂Ri

Eg(r,R) + wiEwj
(33)

τ
(inhom)
ij (r) = ∂i(ρ(r))E∂j ρ(r) + ∂i(s(r))E∂j s(r)

+ 1

2
Eν(r)(∂i(uj (r)) + ∂j (ui(r)))

+
∫

dR

(
∂i(g(r,R))E∂j g(r,R) + g(r,R)Rj

∂

∂Ri

∂kE∂kg(r,R)

)
(34)

the elastic extra stress tensor.
The calculations involved in the passage from (26), (29) to (30)–(32) are completely

straightforward. We just recall two useful identities:

ρ∂i∂jE∂j ρ +
∫

dRg∂i∂jE∂j g + uj∂i∂jEν

−ρ∂iEρ − s∂iEs − uj∂iEuj
−

∫
dRg∂iEg

= ∂i

(
e − ρEρ − sEs − ujEuj

− gEg + ρ∂jE∂j ρ + uj∂jEν +
∫

dRg∂jE∂j g

)

−∂j

(
∂i(ρ)E∂j ρ + ∂i(uj )Eν +

∫
dR∂i(g)E∂j g

)
(35)

and

−Eg

∂

∂Ri

(gRj∂j (Eui
)) + Eui

∂j

(
gRj

∂

∂Ri

(Eg)

)

= ∂j

(
gRj

∂

∂Ri

(Eg)Eui

)
− ∂

∂Ri

(gRjEg∂jEui
) (36)

The most efficient way to arrive from (26), (29) to (30)–(32) is to use the form (4) of (2). To
illustrate the calculations involved, we derive the first equation in (30). The left hand side
of (4) equals

∫
drAρ∂ρ/∂t + . . . , where . . . represents the terms involving derivatives of A

with respect to the state variables except the field ρ. The right hand side of (4) we write (we
use, if necessary, the integration by parts and the boundary conditions that make to disappear
all the integrals over the boundaries that arise in the calculations) as

∫
drAρ[•]+ . . ., where

. . . represent again the terms involving derivatives of A with respect to the state variables
except the field ρ. Since (4) is required to hold for all A, we obtain ∂ρ/∂t = [•], which, if
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[•] is written explicitly, is the first equation in (30). The same strategy we then use to obtain
the time evolution equations for the remaining fields.

Now we turn to the dissipation part in the entropy representation:

(
∂

∂t

)

dissip

⎛

⎜⎜
⎜
⎝

ρ

u

e

g

w

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

�[S[ρ]]
�[S[u]]
�[S[e]]
�[S[g]]
�Sw

⎞

⎟⎟
⎟
⎠

(37)

which, if written explicitly, becomes

(
∂ρ

∂t

)

dissip

= 0

(
∂ui

∂t

)

dissip

= −∂j τ
(NS)
ij

(
∂e

∂t

)

dissip

= −∂j

(
τ

(NS)
ji E[ui ]

)
(38)

(
∂g

∂t

)

dissip

= − ∂

∂Rj

(
g�

∂

∂Rj

S[g]
)

(
∂wi

∂t

)

dissip

= λSwi

where

τ
(NS)
ij = η

1

2

1

S[e]
(∂i(S[uj ]/S[e]) + ∂j (S[ui ]/S[e]))

+ 1

S[e]

(
ηvol − 1

3
η

)
∂k(S[uk ]/S[e])δij (39)

is the Navier-Stokes stress tensor.
Finally, we write down the complete GENERIC equation (1) in the entropy representa-

tion. After transforming the Poisson bracket (26) into the entropy representation (we use
below the symbol Ls to denote the transformed Poisson operator), we obtain

∂

∂t

⎛

⎜⎜
⎜
⎝

ρ

u

e

g

w

⎞

⎟⎟
⎟
⎠

= Ls

⎛

⎜⎜
⎜
⎝

0
0
1
0
0

⎞

⎟⎟
⎟
⎠

+

⎛

⎜⎜
⎜
⎝

�[S[ρ]]
�[S[u]]
�[S[e]]
�[S[g]]
�Sw

⎞

⎟⎟
⎟
⎠

(40)

where Ls denotes the Poisson operator in the entropy representation. Written explicitly, (40)
becomes

∂ρ

∂t
= −∂j (ρE[uj ])

∂ui

∂t
= −∂j (uiE[uj ]) − ∂ip − ∂j τ

(nd)
ij − ∂j τ

(NS)
ij
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∂e

∂t
= −∂j (eE[uj ] + pE[uj ] + (τ

(g,w)

ji + τ
(NS)
ji )E[ui ] + q

(e)
i )

∂g

∂t
= −∂j (gE[uj ]) − ∂

∂Ri

(gRj∂jE[ui ])
(41)

− ∂

∂Rj

(
g�

∂

∂Rj

S[g]
)

∂wi

∂t
= −∂j (wiE[uj ]) − ∂j (wiE[wj ]

− s∂i(E[s]) − wj∂i(E[uj ]) − wj∂i(E[wj ])

+λSwi

together with

∂s

∂t
= −∂j (sE[uj ]) − ∂jq

(s)
j + σ (42)

where p is given in (31), τ (nd) is given in (32), τ (g,w) in (33), τ (NS) in (39),

q
(e)
i = sE[s]E[wi ] + wjE[wj ]E[wi ] (43)

is the heat flux,

q
(s)
i = sEui ] + sE[wi ] (44)

is the entropy flux, and

σ = 2S[e]� ≥ 0 (45)

is the entropy production. The derivatives of E appearing in (41) and in (42) are understood
to be expressed, by using the relation (18), in terms of derivatives of S.

The physical interpretation of the governing equations is discussed in the next section.

5 Comparison with Classical Hydrodynamics and Classical and Extended
Irreversible Thermodynamics

The governing equations of extended hydrodynamics (41) have been obtained in Sect. 4
as a particular realization of GENERIC (1). This immediately means that the conservation
laws (5) and the dissipation law (6) hold since they hold for the abstract dynamical system
(1). Moreover, the equations governing the time evolution of the classical hydrodynamic
fields have the form of the local conservation laws. To proceed further with the investi-
gation of solutions of (41) and their comparison with results of experimental observations
we need: (a) to identify the parameters that still remain unspecified in (41) for the fluids
investigated experimentally, (b) to specify boundary conditions, and (c) to prepare appro-
priately the equations for introducing them into computers (i.e. to discretize them). In this
paper we shall not follow this route. Instead, we shall concentrate on the comparison of the
GENERIC approach and the classical way of constructing hydrodynamic equations. In this
section we shall follow the classical approach. We begin with the local conservation laws
for ρ(r),u(r), e(r) and then proceed to specify the fluxes introduced in them (the so called
classical constitutive relations).
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Before doing it, we note already at this point an interesting difference between the
GENERIC and the classical approach. Roughly speaking, the two approaches proceed in
the reverse order. While the fluxes of the mass momentum, energy, and entropy arise as a
result at the end of the GENERIC construction (in Sect. 4), their specification is the point of
departure in the classical construction.

The new physics expressed in the extended theory has entered the GENERIC approach
only in the specification of the state variables (Sect. 3.1) and the fundamental thermody-
namic relation (Sect. 3.2). The rest, i.e. the kinematics (Sect. 3.3) and dissipation (Sect. 3.4),
remained essentially the same as in the classical theory (except for the straightforward ex-
tensions needed to accommodate the new fields g and w). We can thus regard the resulting
extended hydrodynamics presented in Sect. 4 as an answer to the following question: what
happens when the state variables (11) and the fundamental thermodynamic relation (22) are
put into the GENERIC framework (1)? On the other hand, the new physics involved in the
extension enters the classical approach gradually in the specification of the fluxes. One of
the main difficulties met on this path is to retain the intrinsic compatibility of all the fluxes.
In the GENERIC approach the compatibility is guaranteed automatically in all stages of the
construction.

5.1 Classical Constitutive Relations

We shall now compare (41) with equations arising in other investigations of extensions of
classical hydrodynamics.

5.1.1 Mass Flux

In the classical setting in which the state variables are only the fields (ρ(r), u(r), e(r))

and the fundamental thermodynamic relation is local, the mass flux J ρ is postulated to be
the momentum field: J ρ = u(r). The physics behind this specification is the following: the
local mass conservation ∂ρ/∂t = −div J ρ is regarded as a continuity (Liouville) equation
corresponding to the motion of a fluid particle governed by dr/dt = v(r), where v(r) is the
velocity field.

In the GENERIC approach used in the classical setting, the mass flux (see the first equa-
tion in (41)) appears to be J ρ = ρEu(r). If we consider the classical setting in which only
the first term in the kinetic energy (23) is different from zero then indeed ρEu(r) = u(r) and
thus the classical and the GENERIC mass fluxes are identical.

We proceed now to the extended setting in which the state variables are still only the clas-
sical fields (ρ(r),u(r), e(r)) but the fundamental thermodynamic relation involves spatial
gradients. The mass flux J ρ that the GENERIC theory (with the kinetic energy given in
(23)) predicts is J ρ = E[u(r)] = u(r) − l2∇ν(r). A similar result has already appeared in
[1]. The physical interpretation of the new term l2∇ν(r) is the same as the physical inter-
pretation of the third term in the kinetic energy (23). Variations of the mass in space have to
be accompanied with the mass flow that is not taken into account in the overall mass flow
u(r).

In the classical approach, the mass flux that is not just the momentum but a sum of the
momentum and the so called recoverable mass flux has been introduced in [30].

5.1.2 Momentum Flux

In the classical setting (i.e. when x = (ρ(r),u(r), e(r)) and the local equilibrium is as-
sumed), the momentum flux is given by J u

ij = uiuj

ρ
+ pδij + τ

(NS)
ij , where p(r) is the local
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pressure and τ (NS) the Navier-Stokes extra stress tensor (39). The first term represents the
passive advection of the momentum, the second term the force (acting on a surface ele-
ment) due to the local pressure, and the third term the remaining such force. If we reduce
the second equation in (41), (31) and (32) to the classical setting we see again a complete
agreement between the GENERIC and the classical hydrodynamics.

In the extended setting in which we have still x = (ρ(r),u(r), e(r)) but the fundamental
thermodynamic relation is allowed to be nonlocal, the momentum flux remains to be still
composed of the three terms but all of them are modified. The momentum is advected now
by E[u] which, in the case when E depends on ν = div u, is not only the overall velocity.
The scalar hydrostatic pressure p (see (31)) is not any more just a local pressure but a
pressure in which the nonlocal dependence is taken into account. The third term is modified
most profoundly. A nondissipative (elastic) contribution τ (inhom) to the stress tensor arises
as a consequence of the presence of inhomogeneities (see (32)). The inhomogeneous simple
fluid becomes thus a viscoelastic fluid. With the exception of the modification of the first
term, the other two modifications have already appeared in most of the papers (see [20] and
the references cited therein, [21–23]) in which the classical route of extension is followed.

The presence of g and w in the state variables brings about still new terms in both p

(see (31)) and τ (see (32)). The two new terms in τ (i.e. the term τ (g,w)) are both known
from previous investigations. The term involving the pair correlation function is familiar
from the investigation of suspensions of rigid spherical particles [15, 16] (g is in this case
the pair correlation of the suspended particles), the second term from extended irreversible
thermodynamics [12, 13] in which an additional effort is made to reach beyond the linear
formulation.

5.1.3 The Time Evolution of the Pair Correlation Function g

In the context of suspensions of rigid spherical particles, the equation governing the time
evolution of g is known as the Smoluchowski equation [15, 16] or as the configuration space
kinetic equations in [14]. The GENERIC approach thus provides its alternative derivation
and, most importantly, shows how it is integrated in an intrinsically consistent manner into
the set of the remaining time evolution equations.

5.1.4 The Time Evolution of the Entropy Momentum w

The equation governing the time evolution of a quantity that is related to the heat flux has
been investigated in the extended irreversible thermodynamics [12, 13]. This approach re-
quires conservation laws and the compatibility with thermodynamics but not the compat-
ibility with mechanics (i.e. the Hamiltonian structure). Moreover, the exploitation of the
entropy inequality (except if the Liu method [31] allowing a gradual ascent to higher order
polynomial dependence is used) is limited to linear equations. Consequently, the nondissi-
pative (nonlinear) part of the time evolution of w (i.e. the first five terms on the right hand
side of the fifth equation in (41)) does not appear in [13]. We also note that the GENERIC
method leads us to the velocity type field w that is only indirectly related to the heat flux
(43) and the entropy flux (44). In extended irreversible thermodynamics it is the heat flux
itself that is adopted as an independent state variable.

As we have mentioned already in Sect. 3.3, the kinematics of the field w is based on the
physical considerations developed previously in [25, 26].

Finally, we make an observation about the relation of the equation governing the time
evolution of the field w and the Fourier constitutive relation for the heat flux. Let w evolve
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much faster than the rest of the state variables. As t → ∞, the field w → 0. Let us limit
ourselves to the stage in the time evolution where ∂w/∂t as well as w itself are very small.
If we keep in the fifth equation in (41) only the terms linear in w we obtain: λSwi

= s∂iE[s].

By inserting this relation into (43) we have q
(e)
i = −λ(F)∂iE[s], where λ(F) = (sE[s])2

λ
is the

Fourier heat conductivity coefficient.

5.1.5 Entropy Flux

In the extended hydrodynamic that we have introduced in this paper the entropy is not just a
passively advected scalar field but a field with its own dynamics. This is manifested by the
presence of the second term in the entropy flux (44). From the physical point of view, we let
the microscopic motion involved in the changes of the entropy (or alternatively the internal
energy) to present itself on the mesoscopic level in the field w.

5.1.6 Energy Flux

The energy flux is a sum of three terms: (i) the advection of e by the velocity E[u] (the first
term on the right hand side of the third equation in (41)), (ii) the work done during the flow
(the second and the third terms on the right hand side of the third equation in (41), (iii) the
heat flux (the fourth term on the right hand side of the third equation in (41). We note that the
heat flux is irreversible (i.e. it changes its sign if the sign of ww and u is changed). We also
note that the part τ (inhom) (see (34)) of the elastic extra stress tensor (i.e. the part that arises
due to the spatial inhomogeneities) does not participate in the work done during the flow.
The inhomogeneities enter the work only in the term involving the scalar hydrodynamic
pressure p (see (31)).

Finally, we note that in the hydrodynamics in which the compatibility with thermody-
namics is required, the time evolution of the energy and the entropy are closely intercon-
nected. Important consequences of this physical feature for the mathematical properties of
the governing equations (in particular for the implication that Cauchy’s initial value problem
is well posed) has been first realized in [32].

6 Concluding Remarks

We have introduced a new way to construct extensions of classical hydrodynamics. Both the
new and the standard method can be seen as a search for particular realizations of an abstract
dynamical system. In the standard method the abstract framework consists of the local con-
servation (balance) equations for the fields of the local mass, momentum and energy, in the
new method it is GENERIC (1). The new feature that is incorporated into GENERIC is an
appropriate (abstract) mathematical expression of the compatibility with classical mechan-
ics.

The search for a new realization (called constitutive relations in the standard method
and GENERIC constitutive relations in the GENERIC method) is an attempt to express the
particular physics of the particular fluid under consideration in the quantities involved in the
abstract dynamical system. It turns out, as it can be seen in the illustration worked out in this
paper, that the starting point of the classical approach (i.e. specification of the fluxes in the
local conservation laws) is the final point of the GENERIC approach.

The two methods should not be seen as one competing with the other but as being com-
plementary. They offer two different paths to express a physical insight about a particular
fluid in the governing equations of extended hydrodynamics.
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The particular fluid discussed in this paper is a simple fluid in the vicinity of gas-liquid
phase transition. The physics that we want to express and its consequence investigate is the
presence of large spatial inhomogeneities and large fluctuations of classical hydrodynamic
fields. We express the former by extending the fundamental thermodynamic relation from
local to nonlocal and the latter by adopting two new fields into the set of state variables.
One is the pair correlation function and the other is the field related to the heat flux. The
most important new feature of the governing equations obtained by following the GENERIC
extension is the guarantee of their intrinsic consistency. An appearance of a new term in one
of the equations has to be accompanied with an appearance of appropriate new terms in the
remaining equations. Specifically, we mention two interesting new results:

(i) The kinetic energy of the fluids involving large spatial inhomogeneities involves a term
proportional to the square of the divergence of the velocity field. This term then brings
about a modification of the way the hydrostatic pressure is expressed in terms of the
state variables, and mainly, new advective fluxes. For example, the mass flux is no
longer only the momentum but the momentum plus a term proportional to the gradi-
ent of the divergence of the velocity. This is the flux needed to create or destroy the
spatial inhomogeneities.

(ii) The contribution (34) to the elastic extra stress tensor brought about by the local inho-
mogeneities does not participate in the energy balance.

An important advantage of the GENERIC approach is that it is directly applicable on
any level of description. There is no restriction put on the choice of the state variable x.
For example, we can choose x to be a one particular distribution function. The resulting
realization of (1) would be then a kinetic equation. Still more interestingly, we can choose
x to consist of the hydrodynamic fields and the one particle distribution function. With
this choice the resulting realization would represent a multilevel (also called a multiscale)
extension of classical hydrodynamics. We hope to explore the possibility of constructing
multilevel models in a future paper.

Finally, we recall some previous investigation of the fluid discussed in this paper that
were made on the level of kinetic theory. Let the state variable x be chosen to be the one
point phase space distribution function f (r, v), where r and v is the position coordinate and
the momentum of one particle (which can be a molecule or a “fluid particle”). If we make
this choice of state variables, the next step is to introduce a kinetic equation governing the
time evolution of f (r, v). In [33] such kinetic equation has been suggested on the basis of
the following considerations. The essential physics entering the equilibrium van der Waals
theory is the presence of two types of forces: the short range repulsive force and the long
range attractive force. In the dynamical context of kinetic theory, the short range repulsive
force finds its expression in the Enskog kinetic equation and the long range attractive force in
the Vlasov equation. Their combination, termed in [25] the Enskog-Vlasov equation, is then
a candidate for the kinetic equation of fluids undergoing gas-liquid phase transitions. The
kinetic theory approach initiated in [33] has been then derived systematically and further
investigated in [34–37].
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